(3) 10 cm/sec

1.

2.

mode05\B0AH-A1\CB5E\9#\Advence\Science Olympiods\Physics\0]_Motion\0]_Ese p65

end of 7th second?

(1) 40 cm/sec

(2) 20 cm/sec

(4) 5 cm/sec

14.	A body falls from	a heig	tht h = 200 m. T	he ratio of distance travelle	ed in each 2 a during t = 0 to							
	A body falls from a height $h = 200$ m. The ratio of distance travelled in each 2 s, during $t = 0$ to $t = 6$ s of the journey is											
	(1) 1 : 4 : 9			(3) 1 : 3 : 5	(4) 1 . 2 . 3							
15.	A stone is thrown	vertica	ally upward with a	n initial velocity u from the	top of a tower. It reaches the ground							
	with a velocity 3u	. The l	height of the tow	er is	top of a tower. It reaches the ground							
					02							
	$(1) \frac{3u^2}{g}$		(2) g	(3) $\frac{6u^2}{g}$	(4) $\frac{9u^2}{g}$							
16.	A particle is movin	g in a s	traight line with ini	tial velocity u and uniform ac	celeration f. If the sum of the distances							
	travelled in t th and	d (t + ?	1)th seconds is 10	0 cm, then its velocity after	r t seconds in cm/s is							
	(1) 20		(2) 30	(3) 50	(4) 80							
17.	A body freely falli	ng fron	n rest has velocity	v after it falls through a heig								
	A body freely falling from rest has velocity v after it falls through a height h. The distance it has to fall do further for its velocity to become double is											
	(1) 4h		(2) 6h	(3) 3h	(4) 10h							
18.	A body falls from r	est in th	ne gravitational field	d of the earth. The distance tr	ravelled in the fifth second of its motion							
	is $(g = 10 \text{ m/s}^2)$,								
	(1) 25 m		(2) 45 m	(3) 90 m	(4) 125 m							
19.	A stone is droppe	d from	the top of a tower.	If it travels 34.3 m in the las	t second before it reaches the ground,							
	find the height of	the tou	ver. $(g=9.8 \text{ m/s}^2)$, and the second of the second							
			(2) 00.0 m	(3) 78.4 m	(4) 98 m							
20.	A freely falling ob	ject falls	s through a height	h in the n^{th} second. What is t	he fall of height in the next second?							
	(1) $h - g$		(2) hg		•							
			<u> </u>	(3) h + g	$(4) \frac{h}{g}$							
21.	A stone is droppe	ed from	a certain height a	nd another stone is dropped	from the same height after 2 s. What							
		ration a	after 10 more seco									
00	(1) 115.6 m			(3) 172.3 m	(4) 215.6 m							
22.	to reach the grou	a heig	tht of 100 m. Afte	r 2 seconds if gravity disapp	ears, find the total time it would take							
	(1) 2 s	ли (так	(2) 4 s	(0) (
23.		rooky If		(3) 6 s	(4) 8 s							
20.	find the time of	free fall	nie displacement i	n the last second is equal to the	he displacement in the first 3 seconds,							
	(1) 5 s		(2) 10 s	(3) 15 s	(4) 20 -							
24.		wn vert		ocity of 49 ms ⁻¹ . How high	(4) 20 s							
	(1) 98 m		(2) 117.6 m	(3) 122.5 m	(4) 137.2 m							
25.	10/10/20	erticallu	• • • • • • • • • • • • • • • • • • • •		body is thrown vertically upward with							
	double the veloci	ty. Hov	v long does it stay	in air?	ody is thrown vertically upward with							
	(1) 4 s		(2) 8 s	(3) 16 s	(4) 32 s							
26.	A stone is thrown	vertica			p of a tower and reaches ground after							
	12 seconds. Find	the he	ight of the tower.	_	and reaches ground after							
	(1) 98 m		(2) 117.6 m	(3) 137.2 m	(4) 156.8 m							

(3) 1 : 1

(4) 2 : 1

they strike the ground.

(2) 10 : 1

(1) 1 : 10

28	. A	a ball is projected vertical ame instant another ball	lly up from the foot of a is dropped from the top	tower of height 100 m wi of the tower. When and v	th a velocity of 40 ms ⁻¹ . At the where do they meet each other?								
		take $g = 10 \text{ ms}^{-2}$											
		1) 2.5 s ; 68.75 m from	ground	(2) 2 s; 65 m from grou	ınd								
	(3) 3 s : 75 m from grou	nd	(4) 3.5 s; 85 m from gr									
29	. /	An object is projected vertice time of the co	cally up from the top of a to	wer of height 58.8 m with ar	n initial velocity 4.9 ms ⁻¹ . Calculate								
		(1) 2 s	(2) 4 s	(3) 6 s	(4) 8 s								
30	י ו ח	If the time of fall of two		: 2, find the ratio of the h	neights from which they fall.								
		(1) 1: 2	(2) 2: 1	(3) 1: 4	(4) 4: 1								
3	1.	An object is dropped from a balloon rising up with a velocity 2 ms^{-1} . Find the velocity of the object after 2 sec of its release. (take $g = 10 \text{ ms}^{-2}$)											
		(1) 9 ms ⁻¹	(-,	(-)	(4) 36 ms ⁻¹								
3	2.	A ball is dropped from the some distance from the are v_T and v_B respective	top of the building. If the	ball takes 0.5 sec to fall person of the ball at the to	past the 3 m height of a window op and the bottom of the window								
		(1) $v_T + v_B = 12 \text{ m/s}$	(2) $v_T - v_B = 4.9 \text{ m/s}$	(3) $v_T v_B = 1 \text{ m/s}$	$(4) \frac{v_B}{v_T} = 1 \text{ m/s}$								
	33.	An object dropped from the first second. Find the		rs in the last second, seve	n times the distance it covered in								
		(1) 2 s	(2) 3 s		(4) 5 s								
;	34.	A stone is dropped into water from a bridge of height 44.1 m above the water level. Another stone is thrown into water 1 second later. If both strike the water simultaneously, find the initial speed of the second stone.											
		(1) 12.25 ms ⁻¹	(2) 12.5 ms ⁻¹	(3) 12.75 ms ⁻¹	(4) 13 ms ⁻¹								
	35 .	A stone is projected up will they meet in air?	with a velocity 'u' and at	the same time another is	dropped from a height 2u. When								
		(1) 1 s	(2) 2 s	(3) 3 s	(4) 4 s								
	36.	Two bodies are held so fall freely under gravity (1) 4.9 m	eparated by 9.8 m vertically. After 2 s the distance b	lly one above the other. The between them is (2) 19.6 m	hey are released simultaneously to								
		(3) 9.8 m		(4) 39.2 m									
n\01_Exe.p65	37.	A train running at a s	peed of 120 kmph is app It the station. Find the ret	proaching a station. Driver ardation of the train.	applies brakes just 200 m before								
		(1) $\frac{25}{9}$ ms ⁻²	(2) $\frac{30}{11}$ ms ⁻²	(3) $\frac{37}{13}$ ms ⁻²	$(4)\frac{41}{11}$ ms ⁻²								
hympiads\Ph	38	. A bullet fired into a fix it penetrate before co	ed wooden target loses ha oming to rest, if it experie	alf of its velocity after penet inces a constant deceleration	rating 3 cm. How much further will on?								
ie S		· (1) 1 cm	(2) 2 cm	(3) 3 cm	(4) 4 cm								
Advance\Sc	39	. A particle under the a	action of a constant force that covered in next 10 s	moves from rest upto 20 econds is s_2 then	seconds. If distance covered in first								
SE\9th\		(1) $s_1 = s_2$	(2) $s_2 = 3s_1$	(3) $s_2 = 2s_1$	(4) $s_2 = 4s_1$								
OAH-AI\CBS	40	. A ball is thrown verti	cally upward. It has a speces the ball rise? (Take g =	ed of 10 m/sec when it hat $= 10 \text{ m/s}^2$)	as reached one half of its maximum								
1	Coapo	(1) 10 m	(2) 5 m	(3) 15 m	(4) 20 m								

41.	A body moves with a ur and moves in the same of t is	niform acceleration a and 2 2 direction with a constar	zero initial velocity. Another nt velocity v. The two bodie	body B starts from the same point s meet after a time 't'. The value
	$(1) \frac{2v}{a}$	$(2) \frac{v}{a}$	$(3) \frac{v}{2a}$	$(4) \sqrt{\frac{v}{2a}}$
42.	Two balls are dropped f	rom height h and 2h respe	ectively. The ratio of times of	these balls to reach the earth is

- (1) 6 m
 (2) 12 m
 (3) 18 m
 (4) 24 m
 A ball is dropped from the roof of a tower of height h. The total distance covered by it in the last second of its motion is equal to the distance covered by it in first three seconds. The value of h in meters is (g = 10 m/s²)
- (1) 125
 (2) 200
 (3) 100
 (4) 80
 45. A balloon is flying up with a constant velocity of 5 m/s. At a height of 100 m, a stone is dropped from it. At the instant the stone reaches the ground level, the height of the balloon will be
- (1) 25 m
 (2) 0 m
 (3) 125 m
 (4) 100 m
 46. A stone is thrown vertically up from the ground. It reaches a maximum height of 50 meters in 10 sec. After what time it will reach the ground?
 - (1) 10 sec (2) 20 sec (3) 30 sec (4) 40 sec

is moving at a speed of 100 km/hour, the minimum stopping distance is

47. A particle starts sliding down a frictionless inclined plane. If s_n is the distance travelled by it from time

$$t = (n - 1)$$
 sec to $t = n$ sec, the ratio $\frac{S_n}{S_{n+1}}$ is

- (1) $\frac{2n-1}{2n+1}$ (2) $\frac{2n+1}{2n}$ (3) $\frac{2n}{2n+1}$ (4) $\frac{2n+1}{2n-1}$
- 48. If a body starts from rest and travels 120 m in the 8^{th} second, then acceleration is (1) 16 m/s^2 (2) 10 m/s^2 (3) 0.227 m/s^2 (4) 0.03 m/s^2
- **49.** A particle travels 10 m in first 5 s and 10 m in next 3 s. Assuming constant acceleration, what is the distance travelled in next 2 s?
- (1) 8.3 m (2) 9.3 m (3) 10.3 m (4) None of these

 50. Initially a body is at rest. If its acceleration is 5 ms⁻² then the distance travelled in the 18th second is
- 50. Initially a body is at rest. If its acceleration is 5 ms⁻² then the distance travelled in the 18th second is

 (1) 86.6 m

 (2) 87.5 m

 (3) 88 m

 (4) 89 m
- **51.** Figure shows the position-time (x-t) graph of the motion of two boys A and B returning from their school O to their homes P and Q respectively. Which of the following statements is true?

- (1) A walks faster than B
- (3) B starts for home earlier than A
- (2) Both A and B reach home at the same time
- (4) B overtakes A on his way to home

- (1) The particle starts with certain velocity but the motion is retarded and finally the particle stops
- (2) The velocity of the particle is constant throughout
- (3) The acceleration of the particle is constant throughout in the direction of motion
- (4) The particle starts with some constant velocity, the motion is accelerated, and finally the particle moves with some constant velocity.
- 53. A particle starts from rest and its acceleration plotted against time (t) is shown below.

Which of the following represents displacement (s) plotted against time (t)?

54. In question 53, which of the following will represent velocity (v) plotted against time (t)?

55. The velocity-time graph for a particle moving along x-axis is shown in the figure. The corresponding displacement -time graph is correctly shown by

57. The velocity-time graph of a body falling from rest under gravity and rebounding from a solid surface is represented by which of the following graphs?

58. The acceleration-time graph for a body is shown in the figure. The most probable velocity-time graph for the body is

,59. The acceleration of a train between two stations is shown in the figure. The maximum speed of the train is

(1) 60 m/s

(2) 30 m/s

(3) 120 m/s

(4) 90 m/s

(2) 10 m/s

(2) 4 m/s

(3) 12 m/s

(4) 8 m/s

61. The v-t graph of a moving object is given in figure. The maximum acceleration is

(1) 1 cm/s^2

(2) 2 cm/s^2

(3) 3 cm/s^2

(4) 6 cm/s²

62. Speed-time graph of two cars A and B approaching towards each other is shown in figure. Initial distance between them is 60 m. The two cars will cross each other after time

(1) 2 s

(2) 3 s

(3) 1.5 s

(4) $\sqrt{2}$ s

63. A ball is dropped vertically from a height d above the ground. It hits the ground and bounces up vertically to a height $\frac{d}{2}$. Neglecting subsequent motion and air resistance, its velocity v varies with the height h above the ground as

(2) d h

(3) d h

64. A body starts from rest at time t = 0. The acceleration – time graph is shown in the figure. The maximum velocity attained by the body will be

(1) 110 m/s

Acceleration (m/s

(2) 55 m/s

(3) 650 m/s

(4) 550 m/s

Acceleration (m/s²)

time(sec) 11

node05\80AH-AI\CBSE\9#\Advance\Science Olympiads\Physics\01_Motion\01_Exe.p65

65. A dancer is demonstrating dance steps along a straight line. The position-time graph is given below.

The average velocity of the dancer during time interval between t = 4.5 s to t = 9 s is

- (1) 1 ms⁻¹
- $(2) 1.33 \text{ ms}^{-1}$
- (3) 2.75 ms⁻¹
- (4) -0.89 ms⁻¹
- **66.** A lift is going up. The variation in the speed of the lift is as given in the graph. What is the height to which the lift takes the passengers?

- (1) 3.6 m
- (3) 36.0 m

- (2) 28.8 m
- (4) Cannot be calculated from the above graph
- **67.** A graph between the square of the velocity of a particle and the distance (s) moved is shown in figure. The acceleration of the particle in kilometres per hour squared is

(1) 225

- (2) 308.3
- (3) 225
- (4) 308.3
- **68.** The velocity versus time graph of a body moving along a straight line is as shown in fig. The ratio of displacement and distance covered by body in 5 seconds is

- (1) 2 : 3
- (2) 3 : 5
- (3) 1 : 1

(4) 1.5 : 5

70. The fig. shows the displacement-time graph of a particle moving on a straight line path. What is the average velocity of the particle over 10 seconds?

- (1) 2 ms⁻¹
- (2) 4 ms⁻¹
- (3) 6 ms⁻¹
- (4) 8 ms⁻¹
- **71.** The earth's radius is 6400 km. It makes one rotation about its own axis in 24 hrs. The centripetal acceleration of a point on its equator is nearly
 - (1) 340 cm/s²
- (2) 34 cm/s^2
- (3) 3.4 cm/s^2
- $(4) 0.34 \text{ cm/s}^2$
- 72. The acceleration of a point on the rim of flywheel 1 m in diameter, if it makes 1200 revolutions per minute is
 - (1) $8\pi^2 \text{ m/s}^2$
- (2) 80 π^2 m/s²
- (3) 800 π^2 m/s²
- (4) none of these
- 73. A phonograph record on turn table rotates at 30 rpm. The linear speed of a point on the record at the needle at the beginning of the recording when it is at a distance of 14 cm from the centre is
 - (1) 22 cm/sec
- (2) 44 cm/sec
- (3) 48 cm/sec
- (4) 52 cm/sec
- 74. A particle is acted upon by a constant force, the direction of which is always perpendicular to the velocity of particle. The motion of particle takes place in same plane. From the above statement it implies
 - (1) Particle is moving in a circular path
 - (2) Magnitude of its acceleration is constant
 - (3) Its velocity is uniform
 - (4) Both (1) and (2)
- 75. A body moves along the circumference of a circular track. It returns back to its starting point after completing the circular track twice. If the radius of the track is R, the ratio of displacement to the distance covered by the body will be
 - (1) 0

- (2) 8πR
- (3) √3R
- (4) $\frac{\pi}{R}$
- **76.** Two cars are going round curves, one car travelling at 60 km/hr and the other at 30 km/hr. Each car experiences the same centripetal acceleration. The radii of the two curves are in the ratio
 - (1) 4 : 1
- (2) 2 : 1
- (3) 1 : 2
- (4) 1 : 4

77.	A fan is making 600 revolutions/minute. If it makes 1200 revolutions/minute, what is the increase in its angula velocity?										
	(1) $10 \pi \text{ rad/sec}$	(2) 20 π rad/sec	(3) 60 π rad/sec	(4) $40 \pi \text{ rad/sec}$							
78.	A stone tied to the end o 9.8 m/s^2 , its angular spe	f a 20 cm long string is wl ed in rad/sec is	hirled in a horizontal circle.	If the centripetal acceleration is							
	(1) $\frac{22}{7}$	(2) 7	(3) 14	(4) 20							
79 .	The ratio of angular speed of minute's hand and hour's hand of a watch is										
	(1) 1 : 6	(2) 6 : 1	(3) 1 : 12	(4) 12 : 1							
80.	A point on the rim of a wheel 3 m in diameter has linear velocity of 18 m/sec. The angular velocity of the wheel is given by										
	(1) 12 rad/s	(2) 10 rad/s	(3) 8 rad/s	(4) 6 rad/s							
81.	A particle is moving along a circular path of radius 5 m with a uniform speed 5 ms ⁻¹ . What will be the average acceleration when the particle completes half revolution?										
	(1) zero	(2) 10 ms ⁻²	(3) 10 π ms ⁻²	(4) $\frac{10}{\pi}$ ms ⁻²							
82.	such that each makes a	Two racing cars of masses m_1 and m_2 are moving in circles of radii r_1 and r_2 respectively. Their speeds such that each makes a complete circle in the same length of time t. The ratio of angular speed of the car to that of the second car is									
	(1) $m_1 : m_2$	(2) $r_1 : r_2$	(3) 1 : 1	(4) $m_1 r_1 : m_2 r_2$							
83.	The angular velocity of a v	wheel is 70 rad/s. If the rac	lius of the wheel is 0.5 m, th	nen linear velocity of the wheel is							
	(1) 70 m/s	(2) 35 m/s	(4) 20 m/s								
84.		ular groove of radius 12 cm ear speed of the motion?	moves along the groove stea	adily and completes 7 revolutions							
	(1) 2.3 cm/s	(2) 5.3 cm/s	(3) 0.44 cm/s	(4) None of these							
85.		a string 80 cm long is white 22 s, then the acceleration		th a constant speed. If the stone							

(1) 5 m/s^2

(2) 10 m/s²

(3) 12.8 m/s²

(4) None of these

	ANSWERS																			
	1. 7.4							NO.			Mile	12			15	16	117/	18	10	26
Ans.	1	3	4	3	2	2	3	2	4	3	1	2	3	3	2	3	3	2	3	3
6)17	1951	553	12.63		17.5	1746	27/	2	7.5	30		22	33	34	35	36	37		TO THE	100
Ans.	4	3	1	3	1	2	3	1	2	3	2	1	3	1	2	3	1	1	2	1
Crim.	France .	SULTE S	4-16-5		100	13.5				50	51	57	153	54	165	15/6	6/2	3:	1350	Nov.
Ans.	1	1	4	1	3	1	1	1	1	2	4	1	1	1	4	1	1	2	2	2
(a) 113/	門看達	17777	17.35	431	- 6 - 7	137	17.7/1	7	60	TO.		272年	7/6	H.K.	26	7.6		7.87		1300
Ans.	4	2	1	2	4	3	4	2	4	1	3	3	2	4	1	1	2	2	4	1
Tire.	T.	1724	1.5		100															-
Ans.	4	3	2	2	3															